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1. 

In many structural applications, especially those in aerospace, curved panels are frequently
encountered. Sandwich panels, in particular, where thin face sheets are separated by a thick
layer (core) of weak but very lightweight material, also provide a means to increase the
flexural stiffness for a given weight. The effects of panel curvature in the vibration of
homogeneous beams were treated earlier in reference [1] and references [2, 3, 4]. For slight
curvature, where the initial shape of the beam centerline is quadratic, a closed form
solution was obtained in reference [3] for the vibration of curved Timoshenko beams. It
was shown that even very slight curvature tends to increase the fundamental frequency
sharply for simply supported and clamped beams. Higher modes were less sensitive to
slight curvature, and in general, for cases where shear deformation becomes more
important, initial curvature had a correspondingly smaller influence on the results.

In the case of curved sandwich beams, the finite element method was used in reference
[5] to study the effects of various geometric parameters on the resonant frequency,
emphasis being given to calculation of loss factors. Curvature was shown to make a
difference in the first three modes, becoming less important in higher modes. In reference
[6], some theoretical results of the resonant frequency are verified experimentally where
the energy method was used to derive the governing equations for the transverse vibration
of sandwich beams, and a series solution applicable to simply supported beams was
assumed. The Ritz method was used in reference [7] to perform a parametric study showing
the effects of curvature, core thickness and adhesive shear modulus on the resonant
frequency and loss factors. It is also mentioned that in the case of straight sandwich beams,
natural frequencies were obtained in reference [8] using the Lagrange Multiplier method
and showed good agreement between theory and experiment.

In the present work, a slightly curved sandwich beam, which may contain a delamination
is considered. A non-dimensional variational statement is developed using the principle
of minimum potential energy, where the strain energy is based on the well-known
model by Hoff [9, 10] for straight sandwich beams, and applied to sandwich plates by
Thurston [11]. Here, the sandwich beam also includes the strain energy due to initial
curvature. The important parameters which result involve initial curvature (or initial beam
rise), core shear deformation, core/face sheet geometry and delamination length. The
present study exhibits the interesting interplay of initial curvature, transverse shear
deformation and delamination length for the first time. For instance, it is shown that when
initial curvature increases, the influence of shear deformation becomes less. Also, the
sensitivity to the length of delamination damage is greater for straight beams than for
initially curved beams. It is also greater for cases with less shear deformation (i.e., high
modulus cores).
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2. 

It is assumed that the two equal face sheets take on bending and axial strain energy while
the core takes only shear energy. The strain energy can be expressed in terms of the
extensional displacement, u, and the bending displacement, v, of the face sheets. The
transverse displacement, v, does not vary through the thickness since the normal strain in
the core is considered negligible. Note (see Figure 1) that u is the displacement in the
positive x direction of the centerline of the upper face and an equal opposite displacement
in the lower face. Then, according to the Hoff model, which now includes initial curvature,
the strain energy can be written as

Us =
1
2 g

L

0

[2EfIfv2
,xx +2EfAf (u,x − vo,xxv)2 +GcAc (2u/h− v,x )2] dx, (1)

where If = bt3/12, Af = bt, Ac = bc, h= c+ t, Ef is the Young’s modulus of the face sheets
and Gc is the shear modulus of the core. The third term in the integrand of equation (1)
gives the energy due to transverse shear deformation in the core. The second term of the
integrand contains the effect of initial beam curvature, vo,xx , on the axial strain in the face
sheets as used in references [3, 4] for curved homogeneous beams. The term, vo , is the initial
shape of the beam centerline and (),x =d()/dx, etc. The subscripts f and c denote face sheets
and core respectively.

The corresponding kinetic energy is

T=
1
2 g

L

0

[(2mf +mc )v2 +2mfu2 + Imc (2u/h)2] dx, (2)

where mf and mc are mass per unit length for each face and core, Imc is mass moment of
inertia of the core per unit length, and dots denote time differentiation. If the beam is
undergoing simple harmonic motion of frequency v so that (u, v)= (u, v) sin vt, the
potential energy due to inertial loading, based on equation (2) can be written as (see also
reference [12])

Uv =−
1
2 g

L

0

[(2mf +mc )v2v2 +2mfv
2u2 + Imcv

2(2u/h)2] dx. (3)

The principle of minimum potential energy then states that

dLr =0, where Lr =Us +Uv . (4)

It is convenient to define the non-dimensional quantities V, U and j as

v= hV, u=(h2/L)U, x=Lj, ē=Le, (5)

where L is the length of the beam. In terms of the non-dimensional co-ordinate in the axial
direction, j, the initial shape of the beam is taken as the quadratic vo =4Hj(1− j) so that
the initial curvature is vo,jj =−8H which is constant. The quantity H is the maximum value
of vo (or the initial beam rise) and occurs at the beam center, j=1/2. When the relations
(5) are used in equation (4) and both sides of equation (4) are multiplied by appropriate
factors, the following result is obtained:

(L3/EfIfh2)Lr = J, (6)
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where J is given by

J=g
1

0

[V2
,jj + a(U,j +8DV)2 + (1/b)(2U−V,j )2] dj

− V2 g
1

0

[r2V2 + rU2] dj, (7)

where the following non-dimensional parameters have been defined: b=2EfIf /GcAcL2,
transverse shear parameter; V2 =v2mfL4/EfIf , frequency parameter; D=H/h, initial rise
parameter; the parameters a=Afh2/If , r2 =1+mc /2mf , r= h2/L2 + Imc /2mfL2 involve the
geometry and density of the face sheets and core.

The stationary condition for J, namely dJ=0, will lead to the corresponding governing
non-dimensional differential equations and boundary conditions. Accordingly, by taking
the variation of J, integrating by parts, and using the usual variational calculus, the
following differential equations and boundary conditions are obtained:

V,jjjj −
1
b

V,jj +02b+8aD1U,j +(64aD2 − r2V
2)V=0, (8)

aU,jj +02b+4aD1V,j −04b− rV21U=0. (9)

The corresponding boundary conditions are as follows. At j=0, 1, we are to prescribe
either

a(U,j +8DV) or U, V,jj or V,j , (10, 11)

V,jjj +
1
b

(2U−V,j ) or V. (12)

The boundary conditions on the left of the ‘‘or’’ in equations (10)–(12) are the so-called
natural boundary conditions, and are a consequence of the variational statement dJ=0.
They need not be satisfied by an assumed series in a valid Rayleigh–Ritz approach using
the functional in equation (7), although their satisfaction may improve the calculated
results when finite series are used. The geometric boundary conditions, however, to the
right of ‘‘or’’ in equations (10)–(12) must be satisfied by any assumed series.

It is noted that the structure of the derivatives in the differential equations (8) and (9)
is such that expressions for V and U given by

V= an sin (npj), U= bn cos (npj), (13)

will satisfy them exactly. In other words there is decoupling for each n, and the natural
frequencies for each mode number, n, can be calculated separately. In fact, if a series of
the functions given in equation (13) is used in the Rayleigh–Ritz method using the
functional J, orthogonality of these functions will again allow de-coupling of the modes.
This will not be the case for other boundary conditions or when a delamination is present.
Equations (13) satisfy boundary conditions which are termed roller simple supports, so
that at j=0, 1 V=0, V,jj =0, and the vanishing of the axial load in terms of
displacements gives U,j +8DV=0.
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For the case of fixed simple supports, where V=V,jj =U=0 at j=0 and 1,
appropriate N term series for V and U, which satisfy these boundary conditions, can be
taken as

(V, U)= s
N

n=1

(An , Bn ) sin (npj). (14)

On substitution of the Fourier series (14) into equation (7) for no delamination, using
orthogonality and other integral properties of the trigonometric functions, and minimizing
J with respect to the coefficients in equation (14), i.e., 1J/1An = 1J/1Bn =0, yields 2N
simultaneous equations for the coefficients An , Bn (n=1, 2, . . . , N). These can be written
as

0n4p4 +64aD2 +
n2p2

b
− lr21An + s

N

k=1
(n+ k=odd)

032aD+
8
b1 nk

n2 − k2 Bk =0, (15)

s
N

k=1
(n+ k=odd)

032aD+
8
b1 nk

k2 − n2 Ak +0n2p2a+
4
b

− lr1Bn =0, (16)

where the eigenvalue is denoted by l=V2. In equations (15) and (16), n and k have values
ranging from 1 to N, where the sums over k include only terms for which n+ k=odd.
Note how the summation terms in equations (15) and (16) which involve the parameters
D and b due to initial curvature and shear deformation respectively, lead to the coupling
of the various coefficients in the series (14). A sufficient number of terms, N, are chosen
to provide converged results.

For the case where a delamination is present between the core and one of the face sheets
(see Figure 1), the functional, J, needs to be altered. In the delaminated region, there is
no transverse shear strain energy in the core since the shear stress is zero at the
delamination edge, and there is no mechanism to have it develop through the thickness
since the core is assumed to have no axial stresses. This means that the strain energy due
to transverse shear and the core rotary inertia term must be subtracted from the integral
over the damaged region so that the functional with a delaminated region is written as

Jd = J−g
j2

j1

1
b

(2U−V,j )2 dj+ l g
j2

j1

r1U2 dj, (17)

where the core moment of inertia is contained in r1 = Imc /2mfL2 = r− h2/L2. In the
calculations, a symmetric delamination is selected for convenience, as in Figure (1), so that
the limits of integration in equation (17) are j1 = 1

2 − e and j2 = 1
2 + e, where e is the half

Figure 1. Geometry and notation.
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length of delamination. Except for more algebra, there should be no difficulty in utilizing
the analytical approach developed here to handle arbitrary delamination location.
Minimizing Jd , as given by equation (17) leads to 2N simultaneous equations for An and
Bn (n=1, 2, . . . , N), similar to equations (15) and (16), but now also containing additional
coupling terms arising from the delamination half length, e. These equations are given in
the Appendix A as equations (A.1) and (A.2). Standard procedures are used to determine
the eigenvalues for the quantity, l=V2.

3.   

In the results to follow, consideration is given to the fundamental frequency of lateral
vibration of the sandwich beam. This mode exhibited a rather interesting interaction of
the effects of initial curvature, core shear deformation and the extent of delamination
between the core and the face sheet. The frequency of longitudinal motion of the face sheets
was not affected in any dramatic way (maximum variations of the order of 10% or less)
by the values chosen for the parameters in the present study. In the calculations, typical
values for the parameters given after equation (7), which involve geometry and mass, have
been taken as a=1000, r=0·01 and r2 =2.

In Figure 2 the fundamental frequency, V, is plotted against the initial rise, D, for
various values of the shear parameter, b. Note the substantial increase in frequency even
for small initial curvature. For instance, for an initial rise, D=0·1, and moderate shear
deformation (b=0·10) a 90% increase in frequency is obtained. When there is less shear
deformation (b=0·01), the corresponding increase in frequency is 22%. Now, the
parameter, D, can be written as D=H/h=(H/t)(t/h). In the present calculations, t/h has
the value 0·11, so that when D=0·1 (as taken above), the quantity H/t=0·91. This means
(see Figure 1) that the initial rise is not quite equal to the thickness of the face sheet. Also
indicated in Figure 2 is the fact that when initial curvature increases (higher values of D),
the influence of b becomes less. It can be seen from Figure 2 that when the beam is straight

Figure 2. Fundamental frequency, V, versus initial rise, D, for various values of shear parameter b; e=0.
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Figure 3. Fundamental frequency, V, versus b for various values of initial rise parameter, D; e=0.

(D=0), as b increases from 0·01 to 0·10 the frequency drops by about 45%. When the
beam is initially curved so that D=0·3, the corresponding drop is only about 7%.

The fundamental frequency is plotted against b in Figure 3 for various values of D. After
a sharp drop with b initially, the curves flatten out beyond certain values of b (higher shear
deformation). It is noted here that for the straight sandwich beam case (D=0), as b

becomes very large (where the weak core begins to have less influence on the face sheet

Figure 4. Fundamental frequency, V, versus e (half length of delamination) for various values of b for the
straight (---, D=0) and initially curved (—, D=0·1) beam.
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Figure 5. Fundamental frequency, V, versus b for various values of e for the straight (---, D=0) and initially
curved (—, D=0·1) beam.

deformation), there will be a decoupling of the lateral and longitudinal motion of the face
plates. This is reflected by the decoupling of An and Bn in equations (15) and (16). As b:a
(for D=0), setting the coefficient of An =0 for n=1, leads to lr2 = p4, so that
l=V2 = p4/2 or V=6·98. The bottom curve in Figure 3 will become asymptotic to this
value as b:a.

In Figure 4 the fundamental frequency is plotted against the half length of delamination
for various values of b for both the straight beam and initially curved beam (D=0·1). Note
how the sensitivity to the delamination parameter is greater for the straight beam than for
the initially curved beam (D=0·1). For instance, for moderate shear deformation
(b=0·02), a 60% delamination length (e=0·3), causes a 15% drop in frequency for the
straight beam compared to a 6% drop for the curved beam. The influence of the
delamination is rather small for the higher values of b (high shear deformation). To state
it differently, the influence of a delamination is small in an already weak core.

In Figure 5, V is plotted against b for various values of e for a straight and a curved
beam. Once again we see the greater sensitivity of the straight beam to the delamination
than that of the curved beam.

4. 

A non-dimensional variational statement is developed for a slightly curved beam, which
may contain a delamination between the core and the face sheet. Non-dimensional
parameters are defined which involve initial curvature (or beam rise), core shear
deformation, core/face sheet geometry and delamination length. The numerical results for
the fundamental frequency exhibit the interesting interplay of initial curvature, transverse
shear deformation and delamination length. For instance, it is shown that when initial
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curvature increases, the influence of shear deformation becomes less. Also the sensitivity of
the frequency to the delamination length is greater for straight beams than for initially curved
beams. It is also greater for cases with less shear deformation (i.e., high modulus cores). In
all cases, it is shown how even very slight curvature tends to increase the fundamental
frequency sharply.
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:   Ak  Bk

$n4p4 +64aD2 +
n2p2

b
(1−2F4(n, e))− lr2%An −

np2

b
s
N

k=1
(n+ k=even)

kF3(n, k, e)Ak

+ s
N

k=1
(n+ k=odd)

nk
n2 − k2 032aD+

8
b1Bk +

4np

b
s
N

k=1
(n+ k=odd)

F5(k, n, e)Bk =0, (A.1)

s
N

k=1
(k+ n=odd)

nk
k2 − n2 032aD+

8
b1Ak +

4p

b
s
N

k=1
(k+ n=odd)

kF5(n, k, e)Ak

+$n2p2a+
4
b

(1−2F2(n, e))− l(r−2r1F2(n, e))%Bn −
4
b

s
N

k=1
(n+ k=even)

F1(k, n, e)Bk

−lr1 s
N

k=1
(n+ k=even)

F1(k, n, e)Bk =0, (A.2)
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where

F1(k, n, e)=
(−1)(k− n)/2

p
(g1 − g2), F2(n, e)= e− g3,

F3(k, n, e)=
(−1)(k− n)/2

p
(g1 + g2), F4 = e+ g3,

F5(k, n, e)=

sin 0k− n
2

p1
p

(g1 + g2),

g1 =
sin [(k− n)pe]

k− n
, g2 =

(−1)n sin [(k+ n)pe]
k+ n

, g3 =
(−1)n sin (2npe)

2np
.


